Search results for "plasma heating"

showing 9 items of 9 documents

Plasma diagnostic tools for ECR ion sources : What can we learn from these experiments for the next generation sources

2019

International audience; The order-of-magnitude performance leaps of ECR ion sources over the past decades result from improvements to the magnetic plasma confinement, increases in the microwave heating frequency, and techniques to stabilize the plasma at high densities. Parallel to the technical development of the ion sources themselves, significant effort has been directed into the development of their plasma diagnostic tools. We review the recent results of Electron Cyclotron Resonance Ion Source (ECRIS) plasma diagnostics highlighting a number of selected examples of plasma density, electron energy distribution, and ion confinement time measurements, obtained mostly with the second-gener…

[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]Solenoidmagnetic fieldshiukkaskiihdyttimetplasmafysiikka7. Clean energy01 natural sciencesbremsstrahlungElectron cyclotron resonance010305 fluids & plasmasIonoptical emission spectroscopySuperposition principleion sourcesPhysics::Plasma Physics0103 physical sciencesInstrumentation010302 applied physicsPhysics[PHYS]Physics [physics]plasma confinementplasma properties and parametersplasma diagnosticssyklotronitplasma heatingPlasmaIon sourceComputational physicsMagnetic fieldPlasma diagnostics
researchProduct

Electron–cyclotron–resonance plasma heating with broadband microwave radiation: Anomalous effects

2007

Abstract Affects of microwave bandwidth on the high-charge-states of ion beams extracted from a conventional minimum- B -geometry ECR ion source are first demonstrated. The high-charge-state intensities, produced with broadband microwave radiation are observed to be factors ⩾2 than those produced with narrow bandwidth microwave radiation at the same power level.

PhysicsPlasma heatingbusiness.industryBandwidth (signal processing)General Physics and AstronomyElectron cyclotron resonanceIon sourcePower levelIonOpticsPhysics::Plasma PhysicsBroadbandAtomic physicsbusinessMicrowavePhysics Letters A
researchProduct

Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating

2017

We describe a new technique for the efficient generation of high-energy ions with electromagnetic ion cyclotron waves in multi-ion plasmas. The discussed ‘three-ion’ scenarios are especially suited for strong wave absorption by a very low number of resonant ions. To observe this effect, the plasma composition has to be properly adjusted, as prescribed by theory. We demonstrate the potential of the method on the world-largest plasma magnetic confinement device, JET (Joint European Torus, Culham, UK), and the high-magnetic-field tokamak Alcator C-Mod (Cambridge, USA). The obtained results demonstrate efficient acceleration of 3He ions to high energies in dedicated hydrogen–deuterium mixtures.…

Astrophysical plasmasTokamakradio-frequency heatingCyclotronJoint European TorusPlasma heatingGeneral Physics and AstronomyFREQUENCY114 Physical sciences01 natural sciences7. Clean energyMagnetically confined plasmas010305 fluids & plasmaslaw.inventionIonPHYSICSPhysics and Astronomy (all)FUSIONMODE CONVERSIONlawPhysics::Plasma Physics0103 physical sciencesDielectric heating010306 general physicsPhysics[PHYS]Physics [physics]ta114Solar flare:Física [Àrees temàtiques de la UPC]Plasma dynamicsmulti-ion plasmasSettore FIS/01 - Fisica SperimentaleMagnetic confinement fusionPlasmaHE-3-RICH SOLAR-FLARESTècniques de plasmaJETCYCLOTRON RANGETOKAMAKPhysics::Space PhysicsAtomic physicsHE-3-RICH SOLAR-FLARES; MODE CONVERSION; CYCLOTRON RANGE; FUSION; JET; FREQUENCY; TOKAMAK; PHYSICS
researchProduct

Major results from the first plasma campaign of the Wendelstein 7-X stellarator

2017

After completing the main construction phase of Wendelstein 7-X (W7-X) and successfully commissioning the device, first plasma operation started at the end of 2015. Integral commissioning of plasma start-up and operation using electron cyclotron resonance heating (ECRH) and an extensive set of plasma diagnostics have been completed, allowing initial physics studies during the first operational campaign. Both in helium and hydrogen, plasma breakdown was easily achieved. Gaining experience with plasma vessel conditioning, discharge lengths could be extended gradually. Eventually, discharges lasted up to 6 s, reaching an injected energy of 4 MJ, which is twice the limit originally agreed for t…

Magnetic confinementNuclear and High Energy PhysicsTechnology and EngineeringPlasma heatingCyclotron resonanceCONFINEMENT01 natural sciencesElectron cyclotron resonance010305 fluids & plasmaslaw.inventionPHYSICSNuclear physicsstellaratorcurrent drive; magnetic confinement; plasma heating; stellarator; Nuclear and High Energy Physics; Condensed Matter Physicslaw0103 physical sciencesddc:530010306 general physicstellaratorStellaratorPhysicsmagnetic confinementMagnetic confinement fusionplasma heatingcurrent drive;magnetic confinement;plasma heating;stellaratorPlasma530 PhysikCondensed Matter PhysicsTRANSPORTCurrent drivecurrent driveElectron temperaturePlasma diagnosticsAtomic physicsWendelstein 7-X[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]StellaratorNuclear Fusion
researchProduct

Influence of axial mirror ratios on the kinetic instability threshold in electron cyclotron resonance ion source plasma

2022

International audience; Electron Cyclotron Resonance (ECR) ion source plasmas are prone to kinetic instabilities. The onset of the instabilities manifests as emission of microwaves, bursts of electrons expelled from the plasma volume, and the collapse of the extracted highly charged ion (HCI) currents. Consequently, the instabilities limit the HCI performance of ECR ion sources by limiting the parameter space available for ion source optimization. Previous studies have shown that the transition from stable to unstable plasma regime is strongly influenced by the magnetic field structure, especially the minimum field value inside the magnetic trap (Bmin). This work focuses to study the role o…

magnetic mirrorsplasma confinementsyklotronit[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]plasma heatingplasma instabilitieshiukkaskiihdyttimetelectron energy distribution functionsplasmafysiikkaCondensed Matter Physicsion sourcesPhysics::Plasma Physicscyclotron resonanceions and propertiesplasma (kaasut)
researchProduct

Quasi-periodical kinetic instabilities in minimum-B confined plasma

2022

We present the results of an experimental investigation of quasi-periodical kinetic instabilities exhibited by magnetically confined electron cyclotron resonance heated plasmas. The instabilities were detected by measuring plasma microwave emission, electron losses, and wall bremsstrahlung. The instabilities were found to be grouped into fast sequences of periodic plasma losses, separated by ∼100 µs between the bursts, followed by 1–10 ms quiescent periods before the next event. Increasing the plasma energy content by adjusting the plasma heating parameters, in particular the magnetic field strength, makes the instabilities more chaotic in the time domain. Statistical analysis reveals that …

plasma confinemention sourcessyklotronitPhysicsQC1-999ECR-ionilähteetGeneral Physics and Astronomyplasma heatingplasma instabilitiescyclotron resonancehiukkaskiihdyttimetplasmafysiikkaAIP Advances
researchProduct

Powerful neutron generators based on high current ECR ion sources with gyrotron plasma heating

2017

This article has no abstract. peerReviewed

Physicsta114Plasma heatingbusiness.industryPhysicsQC1-999Nuclear engineeringElectrical engineering01 natural sciences010305 fluids & plasmasIonlaw.inventionECR ion sourcesneutron generatorsNeutron generatorlawGyrotron0103 physical sciencesHigh current010306 general physicsbusinessEPJ Web of Conferences
researchProduct

Temporal evolution of neoclassical tearing modes in the frequently interrupted regime

2010

A phenomenological method for description of temporal evolution of neoclassical tearing modes in the frequently interrupted regime (FIR) is proposed. The method makes it possible to predict the beginning and the end of the FIR regime as well as the frequency of the FIR drops. A few experimental parameters which are used in the model are commonly measured quantities. Several specific ASDEX Upgrade (http://en.wikipedia.org/wiki/ASDEX_Upgrade) FIR discharges with different heating and different FIR behavior are analyzed in detail.

PhysicsUpgradeASDEX UpgradePlasma heatingStochastic processTearingMagnetic reconnectionMechanicsStatistical physicsHardware_ARITHMETICANDLOGICSTRUCTURESCondensed Matter PhysicsPhenomenological method
researchProduct

Modelling of JET hybrid plasmas with emphasis on performance of combined ICRF and NBI heating

2018

International audience; During the 2015--2016 JET campaigns, many efforts have been devoted to the exploration of high-performance plasma scenarios envisaged for DT operation in JET. In this paper, we review various key recent hybrid discharges and model the combined ICRF NBI heating. These deuterium discharges with deuterium beams had the ICRF antenna frequency tuned to match the cyclotron frequency of minority H at the centre of the tokamak coinciding with the second harmonic cyclotron resonance of D. The modelling takes into account the synergy between ICRF and NBI heating through the second harmonic cyclotron resonance of D beam ions, allowing us to assess its impact on the neutron rate…

Nuclear and High Energy PhysicsLight nucleusfusionPlasma heatingicrf heatingNuclear engineeringion-cyclotron rangeCyclotronJET hybrid plasmaICRF heating; NBI heating; JET hybrid plasmas; fusion enhancement; ION-CYCLOTRON RANGE; ENHANCEMENT; FUSION7. Clean energy01 natural sciences010305 fluids & plasmaslaw.inventionICRF heatingfusion enhancementdt plasmaslawNBI heating0103 physical sciences010306 general physicsjet hybrid plasmastokamakenhancementfusion enhancement; ICRF heating; JET hybrid plasmas; NBI heatingnbi heatingJet (fluid)Emphasis (telecommunications)PlasmaCondensed Matter PhysicsJET hybrid plasmasSettore ING-IND/20 - Misure e Strumentazione NucleariresonanceEnvironmental science[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct